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In reference [1], Bishop and Clifford studied the global stability of three types of chaotic
motion occurring in the parametrically excited pendulum where the pivot point is subjected
to a vertical periodic driving. The equation of motion is written in the form [2]

u� + bu� +(1+ p cos vt) sin u=0, (1)

where u represents the angular displacement. Several technical applications of this equation
are concerned with non-linear oscillations in engineering and physics. With the damping
coefficient b=0·1 chaotic motions of oscillatory and rotatory type appear only in very
narrow zones in the space of the parameters v and p. Therefore, they are very difficult
to find both numerically and experimentally. However, tumbling chaos, in which the
pendulum completes an apparently random number of clockwise rotations before changing
direction—such changes also include a number of oscillations about the vertical
position—occurs over a large range of parameters. As a consequence this type of chaotic
response is robust with respect to small variations in the system parameters. The reader
may see from Figure 5(a) in reference [1] the broad zone of tumbling chaos in the space
of the parameters v and p.

The different types of chaotic behaviour were illustrated in reference [1] with the
associated figures of the sampled attractor in the phase plane, the time history of the
angular velocity and the orbit in the phase plane. In addition, the bifurcation diagram of
the sampled angular displacement has been shown.

T 1

The Liapounov dimension dL in the space of the parameters v and p (blanco zones or gaps
indicate periodic motion or convergence to the origin in the phase plane)

dL for v=
ZXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXV

1·3 1·4 1·5 1·6 1·7 1·8 1·9 2·0 2·1 2·2 2·3

p=3·0 1·73 1·74 1·74
p=2·8 1·75 1·73 1·73 1·73
p=2·6 1·73 1·75 1·75 1·73 1·66
p=2·4 1·72 1·75 1·76 1·72 1·73 1·73
p=2·2 1·71 1·73 1·76 1·75 1·75 1·73 1·71
p=2·0 1·71 1·73 1·75 1·74 1·74 1·73 1·74 1·73
p=1·8 1·71 1·72 1·75 1·73 1·73 1·73
p=1·6 1·72 1·73 1·73 1·71 1·72 1·72
p=1·4 1·72 1·72 1·72 1·72
p=1·2 1·71 1·69 1·72
p=1·0 1·70
p=0·8
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Figure 1. The stabilization of the Liapounov exponents over long times. (a) The chaotic case with v=1·8
and p=2·4; (b) the 8P periodic case with v=2 and p=2·6 in the zone of tumbling chaos.

The aim of this letter is to confirm the robust feature of the chaotic solutions of tumbling
type in the relevant zone in the parameter space by a numerical computation of the
Liapounov dimension, which is a measure of the fractal nature of the corresponding
attractor. Indeed, it will be shown that the Liapounov dimension changes only slightly over
the broad zone of tumbling chaos in the parameter space.

According to Wolff’s procedure [3–5] the Liapounov dimension is computed as follows.
With the definitions x1 = u, x2 = u� and x3 =vt, the equation of motion is written as an
autonomous system and the corresponding system of its first variational equations is
derived. Following the Gram–Schmidt method, one can re-orthonormalize the solutions
to the system of the first variational equations with respect to the reference solution. As
the integration method the Runge–Kutta–Hǔta method of order six is used (see references
[6, 7]). If Ni(t) with i=1, 2, 3 characterize the lengths of the solution vectors in the
Gram–Schmidt procedure, then the Liapounov exponents li are defined by the following
averages over long times:

li = lim
T:a

[ln Ni(t)]/T. (2)

One of the Liapounov exponents, l3, is always zero. According to the Kaplan–Yorke
relation the Liapounov dimension dL is given by

dL =1− l1/l2. (3)
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The numerical results for the Liapounov dimension dL are listed in Table 1. The averaged
values in relation (2) have been calculated over long times in order to assure the
stabilization of the computation of the Liapounov exponents. In general T=6000 has
been taken, which was an efficient choice in order to obtain the desired stabilization for
the Liapounov exponents although in some cases a higher value had to be chosen. The
blanco zones or gaps in Table 1 indicate regular periodic motion, or in some cases
attraction towards the stable origin in the phase plane. From this table it is seen that the
Liapounov dimension fluctuates only slightly about the value dL =1·73 in the large zone
of tumbling chaos in the parameter space. Its maximum value, i.e., dL =1·76 is attained
in the case with v=1·8, p=2·4 and also for v=1·6, p=2·2. It is emphasized that the
same numerical results were obtained by using different initial conditions for the reference
orbit. For larger values of v (2·3EvE 3) and (or) for smaller values of p (0E pE 0·8)
periodic solutions or convergence towards the origin in the phase plane were found. The
chaotic region is not extended to the left part in Table 1 at lower values of v, although
it is not excluded that chaotic response may occur.

These numerical results based on the computation of the Liapounov dimension confirm
that tumbling chaos is robust with respect to small changes in the system parameters v

and p. The zone in the parameter space where tumbling chaos is found, as is seen from
Table 1, nearly coincides with the zone indicated in Figure 5(a) in reference [1] and is
further commented on at the end of page 146 in the cited reference.

The stabilization of the Liapounov exponents over long times is shown in Figure 1(a)
for the case with v=1·8 and p=2·4. The final time has been taken as T=6000, which

Figure 2. Periodic orbits in the phase plane in the zone of tumbling chaos. (a) 8P solution for v=2, p=2·6;
(b) 6P solution for v=1·7 and p=1·4.
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Figure 3. Coexisting orbits in the phase plane for v=1·8 and p=0·8. (a) 1P solution with winding number
W=1; (b) 2P solution with winding number W=0.

corresponds to about 1720 cycles of the forcing period. The Liapounov exponents are given
by l1 =0·309 and l2 =−0·409. The Liapounov dimension is dL =1·76: i.e., its maximum
value in the zone of the parameter space under consideration. One of the Liapounov
exponents is positive in this chaotic case.

As is seen from Table 1, several periodic windows were found in the zone of tumbling
chaos: e.g., for v=1·7, p=1·4 (6P solution with P=2p/v); for v=1·8, p=1·8 (8P
solution); for v=1·9, p=2·2 (8P solution) and for v=2, p=2·6 (8P solution). In these
cases long chaotic transients have been noticed before they settle into a stable periodic
solution. The behaviour of the Liapounov exponents for the case of the 8P solution with
v=2 and p=2·6 in Figure 1(b) is illustrated. The Liapounov exponents are both
negative: l1 =−0·0342 and l2 =−0·0658. In Figure 2(a) is shown the phase portrait for
this 8P solution with x1 =0·848561 and x2 =2·883434 at t=0. The 6P solution for the
case v=1·7, p=1·4 is illustrated in Figure 2(b), where x1 =1·454203 and
x2 =−2·389148 at t=0. It is emphasized—without mentioning details—that periodic
windows in the zone of tumbling chaos have already been found by Bishop and Clifford
(see reference [1], page 146).

In certain cases coexisting 1P and 2P solutions have been detected. For example, with
v=1·8, p=0·8 the 1P solution with x1 =−0·675471 and x2 =2·443927 at t=0 was
found (see Figure 3(a) representing its orbit in the phase plane) and the 2P solution with
x1 =1·878260 and x2 =−0·253306 at t=0 illustrated in Figure 3(b). For the 1P solution
the winding number W defined by

W= lim
n:a

(x(n)
1 − x(0)

1 )/2pn, (4)



    109

is found to be W=1. This reveals the rotatory type of this solution characterized by one
complete rotation each forcing period. In the case of the 2P solution the winding number
is W=0, indicating the oscillatory nature of this solution.
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In the letter by R. Van Dooren, the Liapunov dimension was calculated for the tumbling
chaotic zone. A value of 1·73 was obtained over a wide region of parameter space, with
narrow fluctuations in windows of period response. The fact that the Liapunov dimension
remains roughly constant implies that the attractor does not alter its form (the attractor
does not undergo any major crises; see reference [1]). This result, confirmed by our own
findings on the Liapunov dimension, coupled with the fact that the motion is stable over
a wide region in parameter space, reinforces the conclusion that the tumbling motion is
robust. Moreover, in a large portion of the zone of stability it is the only stable solution.

The Liapunov dimension for the oscillating chaos is approximately 1·25, while for the
rotating chaos was roughly 1·17. However these cannot be verified over a broad range of
parameters since the attractor is stable only over a very narrow parameter range. To the
naked eye these motions are almost indistinguishable from the periodic oscillating and
rotating motions that precede it while the tumbling motions explore much of the phase
space.

In a subsequent work [2], a pseudo-Anasov orbit of the pendulum was located which
proved the existence of a horseshoe which extends much of the earlier numerical
investigation of the chaotic response.
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